The Pythagorean Theorem

Copy the outcome in your scribbler and then read the achievement indicators.
SS1: Develop and apply the Pythagorean theorem to solve problems.

ACHIEVEMENT INDICATORS

- Model and explain the Pythagorean theorem concretely, pictorially or using technology, and symbolically.
- Explain, using examples, that the Pythagorean theorem applies only to right triangles.
- Determine whether or not a given triangle is a right triangle by applying the Pythagorean theorem.
- Determine the measure of the third side of a right triangle, given the measures of the other two sides, to solve a given problem.
- Solve a given problem that involves Pythagorean triples, e.g., $3,4,5$ or $5,12,13$.

View the following videos and take notes in your scribbler.

- https://www.youtube.com/watch?v=Yo mpsDIEdtc
- https://www.youtube.com/watch?v=ua j0XcLtN5c

$$
a^{2}+b^{2}=c^{2}
$$

We can use the properties of a right triangle to find the length of a line segment. A right triangle has two sides that form the right angle. The third side of the right triangle is called the hypotenuse. The two shorter sides are called the legs.

Isosceles right triangle

Scalene right triangle

Copy this slide in your scribbler.

1.5 - Connect

- Read the Connect section on page 32 (also in the image to the left).
- Copy the definition for Pythagorean Theorem in your scribbler.
- Read Examples 1 and 2 on pages 32 and

33.

Here is a right triangle, with a square drawn on each side.

Notice that: $25=9+16$
A similar relationship is true for all right triangles.

In a right triangle, the area of the square on the hypotenuse is equal to the sum of the areas of the squares on the legs.

The area of the square on
the hypotenuse is 25
The areas of the squares on the legs are 9 and 16.

The Pythagorean Theorem is named for the Greek mathematician, Pythagoras.

This relationship is called the Pythagorean Theorem.

We can use this relationship to find the length of any side of a right triangle, when we know the lengths of the other two sides.

Review

Pythagorean Theorem
$a^{2}+b^{2}=h^{2}$
$3^{2}+4^{2}=5^{2}$
$9+16=25$
$25=25$

Create your own right triangle using grid paper for the following measurements (6,8, and10). Glue this example into your math scribbler).

Practice

1) Complete questions $1,2,3,4$ and 7 on pages 33 and 34 .

Worksheet 1.5

SS1 Journal Question \#1

1.6 Exploring the
 Pythagorean Theorem

- Read the Connect section on page 40.
- Read Examples 1 and 2 on pages 41 and 42.
- Copy the definition for Pythagorean triple and include an example.

> The symbol \neq means "does not equal."

Practice - Complete questions 3, 4, 5, 7 \& 8 on pages 43 and 44.

3. The area of the square on each side of a triangle is given. Is the triangle a right triangle? How do you know?
a)

4. Which of these triangles appears to be a right triangle? Determine whether each triangle is a right triangle.
Justify your answers.

5. Look at the triangle below. Can the Pythagorean Theorem be used to find the length of the side labelled with a variable? Why or why not?

6. Which sets of numbers below are Pythagorean triples?
How did you decide?
a) $16,30,34$
b) $6,8,9$
c) $15,39,36$
d) $16,65,63$
e) $9,30,35$
f) $40,42,58$
7. An elder and his granddaughter, Kashala, are laying a plywood floor in a cabin.
The floor is rectangular, with side lengths 9 m and 12 m .
Kashala measures the diagonal of the floor as 15 m .
Is the angle between the two sides a right angle?
Justify your answer.

Worksheet 1.6

SS1 Journal Question \#2

1.7 Applying the Pythagorean Theorem

- Read the Connect section on pages 46 and 47.
- Read Examples 1 and 2 on pages 47 and 48.

Real-world applications

- https://www.youtube.com/watch?v=gR f780Pce7o
- View the video above to see where the Pythagorean Theorem is used.

Practice

- Complete questions 4, 5 and 9 on page 49. You may use a calculator but must show all your work.
- NOTE: When answering word problems, create a drawing to support your work.
- Worksheet 1.7 - Applying the Pythagorean Theorem (pages 18-20 in the Homework and Practice Book)

SS1 Journal Question \#3

